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SPOT-BASED PROXIMAL SENSING FOR FIELD-SCALE 

ASSESSMENT OF WINTER WHEAT YIELD AND  

ECONOMICAL PRODUCTION 

 

SUMMARY  

The study was conducted on a test field with an area of 255 ha including 

four winter wheat varieties (Basmati, Farinelli, Balaton, and NS40S). The 

objective of this research was to evaluate the suitability of NDVI and soil ECa 

data in the modeling of selected winter wheat properties. The results in this paper 

are based on observations of a plant canopy at 40 locations using an NDVI sensor 

measured at four stages (BBCH65, BBCH75, BBCH83, and BBCH89), as well as 

soil electromagnetic conductivity using an EC probe before analysis had 

commenced. The strongest relation between yield components and NDVIs was 

observed in the milk growth stage (R ranged from 0.30 to 0.67). Poor correlation 

was determined between soil ECa and wheat traits. Ordinary least squares 

regression gave models where average NDVI and soil ECa described 75% 

variation in plant height of the Balaton variety; 74% of Farinelli plant height 

changes were characterized by NDVIBBCH65 and EC; 73% of Basmati yield 

was explained by NDVIBBCH75 and EC. Sufficient rainfall during the growing 

season, high fertility of the soil and appropriate temperature regime lowered the 

influence of spatial heterogeneity on final crop outcomes due to optimal water 

and nutrition uptake. 

Keywords: geostatistics, NDVI, soil apparent electrical conductivity, 

wheat, yield prediction. 

 
INTRODUCTION 

The efficiency of soil and plant management is strongly dependent on the 

method of data collection hence data validity and data usability in the decision-

making process. Huge scientific resources have been allocated in the 
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development of farmer-friendly sensing devices (low price, easy to handle, high 

efficiency), algorithms and PC software that could be equally efficient in various 

agro-ecological environments. The most advanced techniques used in temporal 

studies have been provided from informatics (big data, machine learning, 

geostatistics, etc.). Some authors have worked on the development of algorithms 

for distinguishing “good” from “bad” data, on the form and pattern recognition 

(Moshou et al., 2002; Pantazi et al., 2016), designs of self-driving robots, etc. 

Optical sensors have become very popular in crop scouting and scientific 

research. Simple handling and non-destructive measurement make them suitable 

for wide range of applications on different crops, and instant data can be collected 

without biomaterials destruction (Raun et al., 2002; Magney et al., 2016; Ljubičić 

et al, 2017). The results of studies based on remote or proximal optical sensors 

offer a vast number of vegetative indices which could be used in the prediction of 

crop maturity, yield potential, plant health estimation, detection of weeds and 

pests, etc. Spectral analysis of reflected waves from either plant canopy or soil is 

valuable in recognition of spectral “fingerprints”, which help identify some biotic 

or abiotic processes that are otherwise undetectable by human or machine. 

Multispectral sensors use natural source of light which highly depends on the sun 

exposure, cloudiness, architecture and reflective characteristics of scanned 

objects that could jeopardize recording stability in time, especially if large field 

area is observed which requires a lot of time (Oberti et al., 2014; Whetton et al., 

2017). From empirical point of view, commercial NDVI devices that use artificial 

source of light are more convenient solution for spectral reflectance sensing. 

They are more confident in all weather conditions, easy to use, provide instant 

data, can be hand held, attached to sensor based variable rate applicators or 

carried by UAVs. NDVI maps ensure insight into crop spatial variability, but 

single parameter is not sufficient to reveal the real causes of yield variability. Due 

to the complexity of soil and its influence on plant development, additional 

examinations in form of standard scientific measurement or proximal sensing 

increase the quality of spatial modeling and robustness of gained solutions (Huete 

et al., 2012; Kostić et al., 2016; Magney et al., 2016). Winter wheat is suitable for 

spectral scanning due to high plant population and early soil coverage. Successive 

NDVI measurement during the wheat growing period might offer reliable yield 

prediction modeling (Raun et al., 2002). Also measurements of apparent electrical 

conductivity (ECa) using electromagnetic induction (EMI) give information 

related of soil physical properties, and it is broadly used to delineate management 

zones of yield potential (Bramley, 2001; Rodrigues et al., 2015; Quinta-Nova and 

Ferreira, 2020).  

The objectives of this research were to evaluate the suitability of NDVI 

data and soil ECa data in the modeling of selected winter wheat properties. 

 

MATERIAL AND METHODS 

The study was carried out at the field located in the northern part of the 

Republic of Serbia (45.563785N, 19.876757E) on calcic chernozem type of soil 
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during the 2015/2016 growing season. It is used in traditional wheat-maize-

soybean crop rotation with conventional deep plowing or chiseling as primary 

tillage. According to Kovačević et al. (2012), Serbia climate conditions could be 

characterized with higher precipitation sums in autumn and winter, and 

significantly lower in spring, which is the critical period for wheat development. 

Table 1 shows significantly higher amount of rainfall in the 2015/2016 growing 

season compared to an average value obtained from long-term climate data. Field 

area grown with winter wheat covers 255 ha in total. Four varieties of winter 

wheat were used in the experiment (Basmati, Farinelli, Balaton and NS40S). The 

sowing was started on 15
th
 October and finished 12 days later in 2015, with a 

seeding rate 255 kg/ha and 15 cm row to row distance. 

 

Table 1. Climate parameters for observed field in 2015/2016 growing season  

Month Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Total 

Temp.  

(ºC) 

11.3 7.8 3.2 1.2 7.3 7.9 14.3 16.7 21.6 91.3 

Precip.  

(mm) 

74.6 56.1 3.6 51.6 49 65.3 74.2 84.6 143 669.32 

Soil sampling was done by a specialized vehicle equipped with a GPS 

receiver and automatic sampling device (340 samples were taken). Additional 

observations of soil and plants in the field were conducted at 40 common 

locations (10 per variety) which were scattered in order to ensure approximately 

equal coverage considering the irregular subfield shape (Figure 3b). Apparent soil 

electrical conductivity (ECa) was measured prior to sowing using an EM38-MK2 

device (Geonics Ltd., Ontario, Canada). Measurement was done in vertical mode 

covering the surrounding area of the observed locations as well. Average ECa 

values for each location were obtained and subsequently compared with other 

parameters. NDVI measuring was performed with a commercial hand-held sensor 

(GreenSeeker, Trimble USA) in four growing stages of wheat: full flowering 

(BBCH65), medium milk (BBCH75), early dough (BBCH83) and fully ripe stage 

(BBCH89). NDVI measurements were taken by holding GreenSeeker about 60 

cm horizontally above the crop canopy and moving in zig-zag pattern including 

approximately 10x10 m of sensed area. The obtained values were averaged to get 

a single representative value of the location. Yield components (plant height, 

spikes/m
2
, ear length and grain yield) were assessed from the plant samples 

collected at full maturity stage from one square meter in five repetitions at the 

observed area (40 locations, Figure 3a). Also, yield maps were generated using 

the data collected by the harvester monitors. Since the absolute accuracy of yield 

monitor varies with different wheat varieties due to uneven grain properties, 

which cause different response of the embedded sensors, the collected yield 

values were post-calibrated to reduce possible data discontinuity. Unprocessed 

yield data could skew the results; the values can be underestimated or 

overestimated depending on the source of the error. Method for data cleaning was 

based on statistical data interpretation and minimum and maximum yield 
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thresholds. Yield monitoring was done at 1.2-1.3 m distance according to 

combine average speed and measurement frequency. In order to compare the data 

recorded by yield monitors and yield data obtained from samples, certain yield 

monitor data were manually extracted using GIS. The selection was done on the 

map by choosing the points-data within 10 m diameter around each location of 

observation, and the mean value was calculated afterwards (Figure 2a). The 

obtained linear models given in Table 2 show how well are fitted grain yield data 

from yield monitor and from samples. The quality of adjusted yield values was 

evaluated by using the RRMSE parameter which indicates that differences are 

regular for all varieties, and confirms the confidence of the models. 

 

Table 2. Comparison of wheat yield data collected with yield monitor and 

standard sampling for postharvest yield monitor data correction. 

Variety QYm(y) QOb(x) Qadjust Model R
2
(x, y) RMMSE 

Basmati 7246.4
a
 7672.8

a
 7673.3 Qadjust=1.05QYm+76.8 0.97 2.03 

Farinelli 8884.7
b
 9587.6

c
 9587.74 Qadjust=0.97QYm+945.8 0.86 4.77 

Balaton 8149.6
b
 8464.6

ab
 8464.76 QYm=0.91QOb+512.7 0.89 2.01 

NS40S 8326.2
b
 8536.8

b
 8536.85 QYm=0.92QOb+502.2 0.74 2.97 

Note: a,b,c different classes obtained by ANOVA (p=0.05); QYm(y)-average yield recorded by monitor; QOb(x)-

average yield calculated from data collected from samples; Qadjust- adjusted yield data. 

 

The regression analysis was used to observe individual contribution of 

wheat yield components to sensor readings. All statistical analyses were carried 

out using STATISTICA software (StatSoft Inc., Tulsa, OK, USA). The 

geostatistical tools were engaged for spatial data analysis. Spatial dependence of 

the data ware observed and modeled by variogram functions. The kriging 

interpolation was used for data interpolation, as well as for the mapping. Ordinary 

least squares (OLS) regression was conducted to determine the relation of NDVIs 

and soil ECs with yield components. The significance of each explanatory 

variable was checked with OLS, as well as the normality of distribution of 

residuals and confidence of the model (Terrón et al., 2011). All geostatistical 

operations were done in ArcGis software. 

 

RESULTS AND DISCUSSION 

Interpretation of 95% confidence intervals was used to assess the 

difference between mean values given in Figure 1. The results of analysis of the 

observed parameters revealed that phenotypic divergence of the selected wheat 

varieties were appropriate for this kind of research in which the reliability of crop 

and soil scouting technics should be proven. From Figure 1a, it is clear that NDVI 

reached the highest value (∼0.85) around flowering stage when the plant 

photosynthesis and leaf area were on the top level causing saturation effect and 

already reported by several authors (Aparicio et al., 2000; Erdle and 

Schmidhalter, 2013). Afterwards, it gradually decreased until maturity (0.13-0.4) 

when the reflectance of visible wavelengths increased and reflectance of NIR 
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decreased as a consequence of less absorption of visible light in the leaves (Babar 

et al., 2006; Naser, 2012; Reynolds et al., 2012b; Sultana et al., 2014).  

 

 

 

 
Figure 1. The overall mean values of the observed crop parameters, soil apparent 

electrical conductivity (ECa) and normalized difference vegetation index (NDVI) 
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In general, NDVI for all genotypes was slightly decreasing from BBCH65 

stage to BBCH83 stage; thereafter, NDVI decrease was more rapid. Slower 

reduction of NDVI index of Basmati plot (Figure 1a) can be explained by the fact 

that during maturation period, volume reduction of vegetative parts did not 

uncover the soil surface as much as in case of other varieties which had less plant 

density. Hence, the spectral characteristics of reflected light from Basmati plot 

include more NIR lights and higher average NDVI at all. The Basmati variety had 

the highest average value of NDVI and spike/m
2
 (Figure 1b,f), likewise the 

lowest grain yield of all included varieties (Figure 1g,h). It could be stated that 

high average NDVI readings of Basmati plants are induced by higher plant 

density (spike/m
2
) which caused the lower reflection from soil surface (in 

comparison to other three varieties). According to range of NDVI downtrend of 

each variety as shown in Figure 1a and their yield performance (Figure 1f,g), the 

NDVI declining characteristics could be good indicator of tillering and yield 

potential. Farinelly plants had the longest spikes hence the highest yield. Also, 

Farinelli had smaller reduction of NDVI index during maturation than Basmati 

and NS40S.  

 
Figure 2. Comparison of R coefficient calculated between selected wheat traits 

and sensors recordings 

 
According to the range of confidence intervals of soil ECa (Figure 1c), 

certain data dissipation is evident which implies absence of data normality. 

Various ECa values of subfield could be the result of elevation impact, hence 

water and clay distribution over soil layer. The Farinelli subfield had the highest 

value of soil ECa with very wide 95% confidence intervals. Due to a range of 
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intervals, no meaningful difference was recorded between soil ECa data groups. 

Concerning plant height feature, the highest average value was obtained for 

Balaton variety (95 cm), which were similar to NS40S variety (92 cm, Figure 1d). 

There were no differences between Basmati (83 cm) and Farinelli (82 cm), 

although these two varieties statistically differed from Balaton and NS40S. The 

mean values of spike lengths ranged from 6.2 cm for Basmati to 7.5 cm for 

Farineli, as shown in Figure 1e. It could be noted that similar average values were 

obtained for Basmati (6.2 cm) and Balaton (6.4 cm) varieties, also between 

Farinelli (7.5 cm) and NS40S (7.1 cm) varieties. The greatest spikes/m
2
 were 

observed on Basmati plot (480), followed by Farinelli (420), Balaton (350) and 

NS40S (310) varieties. The last two graphs in Figure 1 are presented to show how 

well the data on wheat yield from observed locations is matched comparing 

manual collection with data from harvester yield monitor. For better 

understanding of relationship between selected parameters and sensors data, the R 

values are presented as 95% confidence intervals of mean values (Figure 2). The 

Figure 2a shows that the highest average correlation between NDVI and wheat 

traits was achieved on Basmati plot (R=0.46) while the weakest correlation was 

observed between NDVI and wheat traits of NS40S (R=0.33). 

If consider the average correlation among NDVI index and phenotypic 

parameters (Figure 2b), it is clear that stage from full flowering to medium milk 

appears as the best for the early assessment of wheat outcomes (Hansen et al., 

2002, Magney et al., 2016). Based on the width of the confidence interval of the 

coefficient R (Figure 2c), it can be noted that the parameter plant height was best 

recognized (R=0.45) considering all varieties and time of measurement. Almost 

the same value was obtained in case of yield parameter but with lower confidence 

due to wider confidence intervals. Soil ECa didn’t reach any meaningful 

correlation with tested varieties or their components (Figure 2d), although the 

yield of Farinelli could be distinguished from others (R=0.35). 

 

Spatial analysis 

The thematic maps are generated to enable additional inspection of spatial 

arrangement of measured parameters (Figure 3). The map of humus shows that 

the zones with similar values are randomly grouped in the field without any 

relation to a particular plot or direction of the field. Certain zones with slightly 

higher humus content were formed on a subplot with Farinelli variety and they 

matched with higher grain yield zones. The maps of potassium and phosphorus 

show certain regularity in spatial distribution. The zone with highest content of 

P2O5 and K2O in soil is located in the south-west part and changes gradually to 

opposite direction. This fact is contradictory to the yield map since the greatest 

yields were achieved in the south-east part. The yield maps visualize spatial 

variability of gathered yield, which was ranged at most from 6.5 to 10.5 t ha
-1

 

(Table 3). The low value zone is concentrated along the right-bottom side of the 

field and its position coincides with the position of Basmati subplot. Higher yield 

associated with dark green color overlaps the area where Farinelli variety was 
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grown. On NS40S and Balaton subplots, there is erratic distribution of raster grid 

with sporadic changes of high and low yield. Field elevation map comprises 

higher altitude in the bottom zone (Basmati field) and lower in the middle of 

Farinelli subplot. Spatial structure of altitudes describes a relief, which is one of 

the greatest contributing factors for crop yield. It is indicative that water 

availability in soil, and consequently the nutrients, has a significant impact on 

wheat yield. Considering the results given in Figure 1, it could be concluded that 

Farinelli and Basmati varieties have the widest confident intervals, which 

matches the presented spatial pattern of yield map (Figure 3). The results of OLS 

analysis of the sensor data as the indicator of yield components are presented in 

Table 3.  

 

Table 3. Characteristics of OLS analysis of selected wheat features and 

sensed parameters  
Yield (Basmati) 

Variables Coeff. StdError t-Stat. p  VIF R
2
 

Model intercept -1548.69 480.95 -3.22 0.015* -------- 0.73 

NDVIBBCH75 2268.47 555.52 4.08 0.005* 1.10  

ECa 6.77 2.46 2.76 0.03* 1.10  

Plant height (Farinelli) 

Variables Coeff. StdError t-Stat. p  VIF R
2
 

Model intercept 70.76 9.24 7.66 0.00005* -------- 0.74 

NDVIBBCH65  10.90 10.78 1.01 0.35 1.05  

ECa 0.09 0.03 2.75 0.03* 1.05  

Plant height (Balaton) 

Variables Coeff. StdError t-Stat. p  VIF R
2
 

Model intercept -67.88 37.02 -1.83 0.11 -------- 0.75 

NDVIAV 275.24 62.33 4.42 0.003* 1.04  

ECa 0.349 0.21 1.62 0.15 1.04  
VIF greater than 7.5 indicates redundancy in the explanatory variable 

*Statistically significant at 0.05 level. 

 
Models with other combinations of explanatory variables (sensor data) in 

which variables did not reach significant level of contribution were omitted from 

further analysis. The best correlation, R
2
=0.73, was determined between yield and 

sensor data for Basmati variety which implies that the explanatory variables in 

their joint interaction have a relatively good potential for wheat yield prediction. 

The values given in the Coefficient column indicate the degree and type of 

correlation that exists between the explanatory variable and dependable variable. 

Statistically significant variables are marked with an asterisk (p<0.05). It can be 

concluded that NDVIBBCH75 variable was most influenced by wheat yield, and not 
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so significant relation can be observed between yield and soil EC. This statement 

supports the R analysis presented in Table 2.  

 
Figure 3. The maps of wheat variety plots, soil properties and wheat yield 

presented over real geographical proportions 

 
The OLS model found that ECa could be a good predictor of wheat height 

when considered jointly with NDVIBBCH65. Yield model for Balaton was best 

explained (75%) with soil ECa and NDVIAV variables, although NDVIAV 

proved to be equally meaningful in modeling. With OLS analysis, model fitting 

showed better results compared to the comparison of single parameters. In order 

to make more confident conclusions, regardless of geographic location and period 

of observation, more elements need to be taken into consideration followed by 

various data analysis methods. Without that, the given conclusions could be 

relevant but only for the specific moment of measurement and the constellation of 

natural factors that are highly changeable over time and space. 

 

CONCLUSIONS 

The presented results of multivariable analysis confirmed that the 

combined measurements of NDVI and soil apparent electrical conductivity have 

the potential to identify the differences in soil conditions, crop stand and wheat 
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traits. The best associations between yield components and NDVIs were achieved 

in milk growth stage with R2 ranged from 30% to 67%. Soil EC didn’t match 

certain correlation with wheat traits and in this case couldn’t be characterized as 

meaningful parameter. Geostatistics partly confirmed the correlations obtained by 

standard statistics. The quantity of dominant factors and complexity of its 

interrelations impose constraints in terms of robustness of given models. 

Uncommon climate condition manifested with sufficient rainfall during growing 

season diminish the influence of observed spatial heterogeneity on final crop 

outcomes hence uncovering of certain relationships. 
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